Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Iwata, Satoru; Kakimura, Naonori (Ed.)In a regular PCP the verifier queries each proof symbol in the same number of tests. This number is called the degree of the proof, and it is at least 1/(sq) where s is the soundness error and q is the number of queries. It is incredibly useful to have regularity and reduced degree in PCP. There is an expander-based transformation by Papadimitriou and Yannakakis that transforms any PCP with a constant number of queries and constant soundness error to a regular PCP with constant degree. There are also transformations for low error projection and unique PCPs. Other PCPs are constructed especially to be regular. In this work we show how to regularize and reduce degree of PCPs with a possibly large number of queries and low soundness error. As an application, we prove NP-hardness of an unweighted variant of the collective minimum monotone satisfying assignment problem, which was introduced by Hirahara (FOCS'22) to prove NP-hardness of MCSP^* (the partial function variant of the Minimum Circuit Size Problem) under randomized reductions. We present a simplified proof and sufficient conditions under which MCSP^* is NP-hard under the standard notion of reduction: MCSP^* is NP-hard under deterministic polynomial-time many-one reductions if there exists a function in E that satisfies certain direct sum properties.more » « less
-
Ahn, Hee-Kap; Sadakane, Kunihiko (Ed.)A version of time-bounded Kolmogorov complexity, denoted KT, has received attention in the past several years, due to its close connection to circuit complexity and to the Minimum Circuit Size Problem MCSP. Essentially all results about the complexity of MCSP hold also for MKTP (the problem of computing the KT complexity of a string). Both MKTP and MCSP are hard for SZK (Statistical Zero Knowledge) under BPP-Turing reductions; neither is known to be NP-complete. Recently, some hardness results for MKTP were proved that are not (yet) known to hold for MCSP. In particular, MKTP is hard for DET (a subclass of P) under nonuniform ≤^{NC^0}_m reductions. In this paper, we improve this, to show that the complement of MKTP is hard for the (apparently larger) class NISZK_L under not only ≤^{NC^0}_m reductions but even under projections. Also, the complement of MKTP is hard for NISZK under ≤^{P/poly}_m reductions. Here, NISZK is the class of problems with non-interactive zero-knowledge proofs, and NISZK_L is the non-interactive version of the class SZK_L that was studied by Dvir et al. As an application, we provide several improved worst-case to average-case reductions to problems in NP, and we obtain a new lower bound on MKTP (which is currently not known to hold for MCSP).more » « less
An official website of the United States government

Full Text Available